Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36234575

RESUMO

The development of green, low cost and sustainable synthetic routes to produce metal nanoparticles is of outmost importance, as these materials fulfill large scale applications in a number of different areas. Herein, snail slime extracted from Helix Aspersa snails was successfully employed both as bio-reducing agent of silver nitrate and as bio-stabilizer of the obtained nanoparticles. Several trials were carried out by varying temperature, the volume of snail slime and the silver nitrate concentration to find the best biogenic pathway to produce silver nanoparticles. The best results were obtained when the synthesis was performed at room temperature and neutral pH. UV-Visible Spectroscopy, SEM-TEM and FTIR were used for a detailed characterization of the nanoparticles. The obtained nanoparticles are spherical, with mean diameters measured from TEM images ranging from 15 to 30 nm and stable over time. The role of proteins and glycoproteins in the biogenic production of silver nanoparticles was elucidated. Infrared spectra clearly showed the presence of proteins all around the silver core. The macromolecular shell is also responsible of the effectiveness of the synthesized AgNPs to inhibit Gram positive and Gram negative bacterial growth.

2.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328661

RESUMO

In the clinical management of solid tumors, the possibility to successfully couple the regeneration of injured tissues with the elimination of residual tumor cells left after surgery could open doors to new therapeutic strategies. In this work, we present a composite hydrogel-electrospun nanofiber scaffold, showing a modular architecture for the delivery of two pharmaceutics with distinct release profiles, that is potentially suitable for local therapy and post-surgical treatment of solid soft tumors. The composite was obtained by coupling gelatin hydrogels to poly(ethylene oxide)/poly(butylene terephthalate) block copolymer nanofibers. Results of the scaffolds' characterization, together with the analysis of gelatin and drug release kinetics, displayed the possibility to modulate the device architecture to control the release kinetics of the drugs, also providing evidence of their activity. In vitro analyses were also performed using a human epithelioid sarcoma cell line. Furthermore, publicly available expression datasets were interrogated. Confocal imaging showcased the nontoxicity of these devices in vitro. ELISA assays confirmed a modulation of IL-10 inflammation-related cytokine supporting the role of this device in tissue repair. In silico analysis confirmed the role of IL-10 in solid tumors including 262 patients affected by sarcoma as a negative prognostic marker for overall survival. In conclusion, the developed modular composite device may provide a key-enabling technology for the treatment of soft tissue sarcoma.


Assuntos
Nanofibras , Neoplasias de Tecidos Moles , Alcenos , Sistemas de Liberação de Medicamentos , Óxido de Etileno , Gelatina , Humanos , Hidrogéis , Interleucina-10 , Óxidos , Ácidos Ftálicos , Poliésteres , Polietilenoglicóis , Polietilenotereftalatos , Engenharia Tecidual , Tecidos Suporte
3.
Pharmaceutics ; 13(6)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201089

RESUMO

Vascular and traumatic injuries of the central nervous system are recognized as global health priorities. A polypharmacology approach that is able to simultaneously target several injury factors by the combination of agents having synergistic effects appears to be promising. Herein, we designed a polymeric delivery system loaded with two drugs, ibuprofen (Ibu) and thyroid hormone triiodothyronine (T3) to in vitro release the suitable amount of the anti-inflammation and the remyelination drug. As a production method, electrospinning technology was used. First, Ibu-loaded micro (diameter circa 0.95-1.20 µm) and nano (diameter circa 0.70 µm) fibers were produced using poly(l-lactide) PLLA and PLGA with different lactide/glycolide ratios (50:50, 75:25, and 85:15) to select the most suitable polymer and fiber diameter. Based on the in vitro release results and in-house knowledge, PLLA nanofibers (mean diameter = 580 ± 120 nm) loaded with both Ibu and T3 were then successfully produced by a co-axial electrospinning technique. The in vitro release studies demonstrated that the final Ibu/T3 PLLA system extended the release of both drugs for 14 days, providing the target sustained release. Finally, studies in cell cultures (RAW macrophages and neural stem cell-derived oligodendrocyte precursor cells-OPCs) demonstrated the anti-inflammatory and promyelinating efficacy of the dual drug-loaded delivery platform.

4.
Int J Pharm ; 598: 120408, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33647415

RESUMO

Gelatin-based films enriched with snail slime are proposed as novel biodegradable and naturally bioadhesive patches for cutaneous drug delivery. Films (thickness range 163-248 µm) were stretchable and they adhered firmly onto the wetted skin, especially those with high amount (70% V/V) of snail slime extract. Fluconazole was selected as model drug and added to films containing the highest amount of snail slime. The presence of Fluconazole (4.53 ± 0.07% w/w) did not modify significantly the mechanical properties, the swelling degree and the bioadhesive performances of the films. Structural investigations demonstrated that the crystalline form III of the drug changed to the amorphous one, forming an amorphous solid dispersion. Moreover, snail slime prevented the drug recrystallization over time. In vitro permeation studies showed that film exhibited a cumulative drug concentration (over 60% in 24 h) similar to that of the control solution containing 20% w/V of ethanol. Fluconazole-loaded gelatin films proved to be effective towards clinical isolates of Candida spp. indicating that the drug maintained its remarkable antifungal activity once formulated into gelatin and snail slime-based films. In conclusion, snail slime, thanks to its peculiar composition, has proved to be responsible of optimal skin adhesion, film flexibility and of the formation of a supersaturating drug delivery system able to increase skin permeation.


Assuntos
Gelatina , Preparações Farmacêuticas , Administração Cutânea , Sistemas de Liberação de Medicamentos , Fluconazol
5.
Int J Pharm ; 591: 119979, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068694

RESUMO

Several strategies have been explored to obtain effective econazole nitrate (ECN) concentrations at the site of application for a prolonged time. In this paper, different gelatin-based film formulations for vaginal application were investigated, containing ECN (10% w/w with respect to gelatin) as pure drug or as drug-solid dispersions (SD). For the production of SD, different polymers were evaluated: polyvinylpyrrolidone (PVP), Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) and Gelucire® 50/13 (mixture of mono-, di- and triglycerides of fatty acids, esters of PEG 1500 and free PEG). Gelucire®-SD showed the best solubility enhancement, increasing 9.2 times the ECN solubility in pH 4.5 solution respect to pure drug; DSC and XRD analysis confirmed the crystalline form of the drug. XRD results evidenced that all gelatin-based films, containing either the drug or the SD, underwent the topotactic transformation of ECN into crystalline econazole (EC), owing to a strong interaction between the drug and the gelatin. Films containing Gelucire®-based SD displayed lower brittleness and rigidity with respect to the other samples; moreover they demonstrated good structural integrity after 24 h of incubation in the acidic solution (swelling degree of about 350%). Then, Gelucire®-SD based films were compared with the corresponding formulations cross-linked by genipin (2% w/w). The addition of genipin did not interfere with the drug-gelatin interaction. Gelucire®-SD based films showed similar release profiles to neat gelatin films, enhancing the drug release in the first 5 h and controlling the EC release over time, avoiding the use of a crosslinking additive. Finally, gelatin films containing Gelucire® solid dispersion displayed good adhesiveness and anti-Candida activity. Overall, results support the potential use of this film formulation as noncytotoxic EC delivery system for the treatment of vaginal candidiasis.


Assuntos
Econazol , Gelatina , Parto Obstétrico , Feminino , Humanos , Polietilenoglicóis , Gravidez , Solubilidade
6.
Int J Biol Macromol ; 143: 126-135, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805330

RESUMO

Snail mucus is an attractive natural substance, which is increasingly used in cosmetic creams and syrups thanks to its emollient, moisturizing, protective and reparative properties. The aim of the present study was to explore the physicochemical properties of chitosan-based films added with snail mucus extracted from Helix Aspersa Muller. To this aim, chitosan films at different content of snail mucus were fabricated by simple solvent casting technique. The results of X-ray diffraction analyses, tensile mechanical tests, Infrared spectroscopy and thermogravimetry demonstrated that snail mucus addition strongly modifies the properties of chitosan films. In particular, it acted like a plasticizer enhancing films extensibility up to ten times and strongly improving their water barrier and bioadhesion properties, with a trend depending on Snail mucus content. Furthermore, it provides the films with antibacterial properties and enhanced cytocompatibility, yielding materials with tailored properties for specific requirements.


Assuntos
Antibacterianos/farmacologia , Quitosana/química , Muco/química , Caramujos/química , Animais , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Análise Espectral , Vapor , Termogravimetria
7.
Molecules ; 24(10)2019 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109143

RESUMO

3D cylindrical layered scaffolds with anisotropic mechanical properties were prepared according to a new and simple method, which involves gelatin foaming, deposition of foamed strips, in situ crosslinking, strip rolling and lyophilization. Different genipin concentrations were tested in order to obtain strips with different crosslinking degrees and a tunable stability in biological environment. Before lyophilization, the strips were curled in a concentric structure to generate anisotropic spiral-cylindrical scaffolds. The scaffolds displayed significantly higher values of stress at break and of the Young modulus in compression along the longitudinal than the transverse direction. Further improvement of the mechanical properties was achieved by adding strontium-substituted hydroxyapatite (Sr-HA) to the scaffold composition and by increasing genipin concentration. Moreover, composition modulated also water uptake ability and degradation behavior. The scaffolds showed a sustained strontium release, suggesting possible applications for the local treatment of abnormally high bone resorption. This study demonstrates that assembly of layers of different composition can be used as a tool to obtain scaffolds with modulated properties, which can be loaded with drugs or biologically active molecules providing properties tailored upon the needs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Módulo de Elasticidade , Hidroxiapatitas/química , Estrôncio/administração & dosagem , Tecidos Suporte/química , Anisotropia , Osso e Ossos/cirurgia , Reagentes de Ligações Cruzadas/química , Liberação Controlada de Fármacos , Gelatina/química , Cinética , Estrôncio/química , Engenharia Tecidual/métodos
8.
Int J Pharm ; 554: 245-255, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423416

RESUMO

In this study, we loaded a biomimetic calcium phosphate bone cement (CPC) with relatively high amounts of a bisphosphonate through the use of Solid Lipid Microparticles (MPs) and investigated bone cells response to the composite cements. 10, 20 and 30% w/w of Alendronate (AL) were successfully introduced into microparticles of Cutina HR and Precirol, which were prepared by means of spray-congealing technique. Addition of AL-loaded MPs to the cement composition provoked a lengthening of the setting and of the hardening processes. However, setting times were still in a range useful for clinical applications, except for the cements at the highest Alendronate content. The composite cements displayed a sustained drug release over time. Cements with the best performances in terms of setting, hardening, mechanical properties and drug release were submitted to in vitro tests using a co-culture model of osteoblast and osteoclast. The results showed that the use of MPs to enrich the cement composition with Alendronate provides materials able to inhibit osteoclast viability and activity, while promoting osteoblast viability and earlier differentiation, indicating that the MPs-cements are good delivery systems for bisphosphonates.


Assuntos
Alendronato/administração & dosagem , Cimentos Ósseos/química , Conservadores da Densidade Óssea/administração & dosagem , Fosfatos de Cálcio/química , Alendronato/química , Alendronato/farmacologia , Materiais Biomiméticos/química , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Técnicas de Cocultura , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Lipídeos , Microesferas , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos
9.
Artigo em Inglês | MEDLINE | ID: mdl-30258842

RESUMO

Stimuli-responsive hydrogel matrices are inspiring manifold applications in controlled delivery of bioactive compounds. Elastin-derived polypeptides form hydrogel matrices that may release bioactive moieties as a function of local increase of active elastases, as it would occur in several processes like inflammation. In view of the development of a patch for healing wounds, recombinant elastin-based polypeptides were combined with a proteolysis-resistant scaffold, made of electrospun poly-L-lactic acid (PLLA) fibers. The results of this study demonstrated the compatibility of these two components. An efficient procedure to obtain a composite material retaining the main features of each component was established. The release of the elastin moiety was monitored by means of a simple protocol. Our data showed that electrospun PLLA can form a composite with fusion proteins bound to elastin-derived polypeptides. Therefore, our approach allows designing a therapeutic agent delivery platform to realize devices capable of responding and interacting with biological systems at the molecular level.

10.
Eur J Pharm Biopharm ; 132: 1-10, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30176285

RESUMO

Oral local delivery of therapeutic biologics is generally limited due to the multiple obstacles of the gastrointestinal (GI) tract, mainly represented by acidic stomach pH and digestive enzymes. In the present study, spray congealing was used to prepare solid lipid microparticles (SLMs) loaded with ß-galactosidase (lactase), an enzyme used for the treatment of lactose intolerance, to achieve a local drug delivery to the small intestine. Lactase was characterized in terms of activity at different pH, kinetic parameters and proteolytic degradation by digestive enzymes. Then, five lipid excipients were used to prepare unloaded SLMs, which were tested regarding lipase-induced digestion. The lipid with the best performance (glyceryl trimyristate) was used to prepare lactase-loaded SLMs. Spray congealed SLMs were spherical with very good encapsulation efficiency (>95%). The ability of the SLMs to protect the enzyme from the degradation in gastric environment was correlated with the particle size and the best formulation preserved the lactase activity up to 70%. Lactase was promptly released in simulated intestinal environment, and an in vitro positive food effect was observed. The present study demonstrated the potential of spray congealing for the preparation of solid lipid formulations able to achieve local oral delivery of a biologic drug.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , beta-Galactosidase/administração & dosagem , Administração Oral , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Excipientes/química , Concentração de Íons de Hidrogênio , Intestino Delgado/metabolismo , Tamanho da Partícula , beta-Galactosidase/farmacocinética
11.
AAPS PharmSciTech ; 19(3): 1426-1436, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29441468

RESUMO

The objective of this study was to assess the efficacy and the capability of a novel ethylcellulose-based dry-coating system to obtain prolonged and stable release profiles of caffeine-loaded pellets. Lauric and oleic acids at a suitable proportion were used to plasticize ethylcellulose. The effect of coating level, percentage of drug loading, inert core particle size, and composition of the coating formulation including the anti-sticking agent on the drug release profile were fully investigated. A coating level of 15% w/w was the maximum layered amount which could modify the drug release. The best controlled drug release was obtained by atomizing talc (2.5% w/w) together with the solid plasticizer during the dry powder-coating process. SEM pictures revealed a substantial drug re-crystallization on the pellet surface, and the release studies evidenced that caffeine diffused through the plasticized polymer acting as pore former. Therefore, the phenomenon of caffeine migration across the coating layer had a strong influence on the permeability of the coating membrane. Comparing dry powder-coated pellets to aqueous film-coated ones, drug migration happened during storage, though more sustained release profiles were obtained. The developed dry powder-coating process enabled the production of stable caffeine sustained release pellets. Surprisingly, the release properties of the dry-coated pellets were mainly influenced by the way of addition of talc into the dry powder-coating blend and by the drug nature and affinity to the coating components. It would be interesting to study the efficacy of novel coating system using a different API.


Assuntos
Celulose/análogos & derivados , Implantes de Medicamento , Cafeína/administração & dosagem , Cafeína/química , Celulose/química , Difusão , Liberação Controlada de Fármacos , Excipientes/química , Tamanho da Partícula , Plastificantes/química , Pós
12.
Eur J Pharm Biopharm ; 122: 6-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28986297

RESUMO

The aim of this work was to develop an innovative drug delivery system potentially useful for the local delivery of Bisphosphonates to bone tissue. We propose the use of Solid Lipid Microparticles (MPs), up to now mainly used for oral and topical drug delivery, as carrier for bisphosphonates due to the favourable biocompatibility and lower toxicity of the lipids compared with many polymers. The delivery platform consisted of a biomimetic α-tricalcium phosphate-gelatin cement (CPC) enriched with alendronate loaded MPs (MPs-AL) produced by the spray congealing technology. Alendronate direct addition to cement composition is limited since Alendronate is able to sequester calcium from calcium phosphates, thus preventing the setting of the cements. At variance, this approach permitted to load a relatively high amount of the drug on the CPC and allowed the controlled release of the highly water soluble alendronate. A Design of Experiment (DoE) was employed for the screening of the effects of the formulation variables related to the presence of unloaded microparticle (MPs) on the cement most important mechanical properties. Then, MPs loaded with 10% w/w of alendronate were produced using five different carriers (Stearic Acid, Stearilic Alcohol, Cutina HR, Tristearin and Precirol ATO5). All MPs-AL exhibited a spherical shape, encapsulation efficiency higher than 90% and prevalent particle size ranging from 100 to 150µm. Solid state characterization (DSC, HSM and X-ray powder diffraction) demonstrated that encapsulation of alendronate into MPs did not alter its crystal structure. MPs-AL addition to the cement provoked a modest lengthening of the setting times and of the hardening reaction leading to the complete transformation of α-tricalcium phosphate into calcium-deficient hydroxyapatite, without significantly affect the cement mechanical properties. Moreover, the results of in vitro AL release study performed on cements enriched with MPs-AL showed that the system allows a controlled release of the drug over time.


Assuntos
Cimentos Ósseos/química , Fosfatos de Cálcio/química , Difosfonatos/química , Lipídeos/química , Alendronato/química , Materiais Biocompatíveis/química , Química Farmacêutica/métodos , Preparações de Ação Retardada , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Polímeros/química , Difração de Raios X/métodos
13.
Int J Pharm ; 516(1-2): 380-391, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27894987

RESUMO

An innovative dry powder coating technology was developed in a high-shear granulator using ethylcellulose (E10) as polymer. Several solid plasticizers were investigated with the aim of decreasing the polymer Tg at least to the highest possible working temperature (80°C). DSC analysis of physical mixtures of E10 and plasticizers evidenced that lauric acid (LA) was the most effective plasticizer. In order to reach the target temperature a liquid plasticizer, oleic acid (OA), was introduced in the coating formulation. Free films were then prepared and the target minimum film forming temperature (MFFT) was established in the range 70-80°C. Depending on the LA:OA weight ratio, Kollidon VA64 was included to decrease the LA recrystallization, while talc served as anti-sticking agent. Curing at the MFFT ensured the formation of homogeneous and stable films with good stability on storage. The dry powder coating process of placebo pellets was then developed, consisting of a combination of liquid assisted and thermal adhesion methods. The best coating formulations in terms of yields, coating efficiency (expressed as Relative Standard Deviation of the weight applied) and low pellets aggregation were based on E10:LA:OA in a weight ratio of 65:20:15 and 60:20:20. Moreover pellets remained stable after 1year of storage (25°C/60% R.H.).


Assuntos
Celulose/análogos & derivados , Excipientes/química , Plastificantes/química , Polímeros/química , Varredura Diferencial de Calorimetria , Celulose/química , Química Farmacêutica/métodos , Cristalização , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Ácidos Láuricos/química , Ácido Oleico/química , Pós , Temperatura , Fatores de Tempo
14.
Biores Open Access ; 5(1): 201-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27588220

RESUMO

Biomimetic materials are designed to stimulate specific cellular responses at the molecular level. To improve the soundness of in vitro testing of the biological impact of new materials, appropriate cell systems and technologies must be standardized also taking regulatory issues into consideration. In this study, the biological and molecular effects of different scaffolds on three neural systems, that is, the neural cell line SH-SY5Y, primary cortical neurons, and neural stem cells, were compared. The effect of poly(L-lactic acid) scaffolds having different surface geometry (conventional two-dimensional seeding flat surface, random or aligned fibers as semi3D structure) and chemical functionalization (laminin or ECM extract) were studied. The endpoints were defined for efficacy (i.e., neural differentiation and neurite elongation) and for safety (i.e., cell death/survival) using high-content analysis. It is demonstrated that (i) the definition of the biological properties of biomaterials is profoundly influenced by the test system used; (ii) the definition of the in vitro safety profile of biomaterials for neural repair is also influenced by the test system; (iii) cell-based high-content screening may well be successfully used to characterize both the efficacy and safety of novel biomaterials, thus speeding up and improving the soundness of this critical step in material science having medical applications.

15.
Int J Pharm ; 495(1): 536-550, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26386139

RESUMO

Praziquantel (PZQ), an anthelmintic drug used in developing countries for the treatment of schistosome infections, was processed using the fluid bed wet granulation technology to prepare fast dispersible granules, as an appropriate and flexible dosage form for pre-school-aged children. Granulation experiments were performed incorporating PZQ either in the powder mixture, according to the traditional way, or in the liquid phase containing wetting agents. In the powder mixture several excipients were tested: Flowlac 100 as filler, Galeniq 721 (isomalt) and Neosorb P 100 T (D-sorbitol) as sweeteners and PVP K30 as binder; while in the liquid phase Lutrol F68, Cremophor RH 40 or Tween 80 as surfactants were investigated. Different formulations loaded with 10% w/w (batches 1-8) and 20% w/w of PZQ (batches 9-13) were produced The majority of granules displayed good flow properties and uniform drug content. X-ray powder diffraction showed that PZQ remained in its original crystalline state, while differential scanning calorimetry and Fourier transform-infrared analysis evidenced the formation of chemical interactions among the ingredients. The solubilisation test performed in non-sink condition to reproduce the actual condition in which a child of 4 years takes the medicine revealed that granules quickly formed a very fine suspension in water (dV90=39.9 µm). Although after the granulation process the solubility of raw PZQ was not increased, adding the aqueous suspension to 500 ml of buffer solution of pH 1.5, simulating the fasted state of a child, 50% of the drug was dissolved after 30 min. After granule manipulation with milk and fruit juices, no PZQ degradation was observed during time. Finally, the selected granule formulation provided evidence to be stable even at hot and very humid climate (30°C/75% RH), at least for the examined time.


Assuntos
Anti-Helmínticos/administração & dosagem , Química Farmacêutica/métodos , Praziquantel/administração & dosagem , Tecnologia Farmacêutica/métodos , Administração Oral , Anti-Helmínticos/uso terapêutico , Varredura Diferencial de Calorimetria , Pré-Escolar , Relação Dose-Resposta a Droga , Estabilidade de Medicamentos , Excipientes/química , Humanos , Modelos Biológicos , Tamanho da Partícula , Praziquantel/uso terapêutico , Esquistossomose/tratamento farmacológico , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Edulcorantes/química , Difração de Raios X
16.
Anal Bioanal Chem ; 405(2-3): 1139-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23187829

RESUMO

A miniaturized multiplex biosensor exploiting a microfluidic oligonucleotide array and chemiluminescence (CL) lensless imaging detection has been developed for parvovirus B19 genotyping. The portable device consists of a reaction chip, comprising a glass slide arrayed with three B19 genotype-specific probes and coupled with a polydimethylsiloxane microfluidic layer, and a charge-coupled device camera modified for lensless CL imaging. Immobilized probes were used in DNA hybridization reactions with biotin-labeled targets, and then hybrids were measured by means of an avidin-horseradish peroxidase (HRP) conjugate and CL detection. All hybridization assay procedures have been optimized to be performed at room temperature through the microfluidic elements of the reaction chip, with sample and reagents delivery via capillary force exploiting adsorbent pads to drive fluids along the microchannels. The biosensor enabled multiplex detection of all B19 genotypes, with detectability down to 80 pmol L(-1) for all B19 genotype oligonucleotides and 650 pmol L(-1) for the amplified product of B19 genotype 1, which is comparable with that obtained in traditional PCR-ELISA formats and with notably shorter assay time (30 min vs. 2 h). The specificity of the assay has been evaluated by performing DNA-DNA hybridization reactions among sequences with different degrees of homology, and no cross hybridizations among B19 genotypes have been observed. The clinical applicability has been demonstrated by assaying amplified products obtained from B19 reference serum samples, with results completely consistent with the reference PCR-ELISA method. The next crucial step will be integration in the biosensor of a miniaturized PCR system for DNA amplification and for heat treatment of amplified products.


Assuntos
Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Infecções por Parvoviridae/virologia , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/isolamento & purificação , DNA Viral/genética , Genótipo , Humanos
17.
Anal Chim Acta ; 721: 167-72, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22405316

RESUMO

Simple, rapid and highly sensitive assays, possibly allowing on-site analysis, are required in the security and forensic fields or to obtain early signs of environmental pollution. Several bioanalytical methods and biosensors based on portable devices have been developed for this purpose. Among them, Lateral Flow ImmunoAssays (LFIAs) offer the advantages of rapidity and ease of use and, thanks to the high specificity of antigen-antibody binding, allow greatly simplifying and reducing sample pre-analytical treatments. However, LFIAs usually employ colloidal gold or latex beads as labels and they rely on the formation of colored bands visible by the naked eye. With this assay format, only qualitative or semi-quantitative information can be obtained and low sensitivity is achieved. Recently, the use of enzyme-catalyzed chemiluminescence detection in LFIA has been proposed to overcome these problems. In this work, we describe the development of a quantitative CL-LFIA assay for the detection of 2,4,6-trinitrotoluene (TNT) in real samples. Thanks to the use of a portable imaging device for CL signal measurement based on a thermoelectrically cooled CCD camera, the analysis could be performed directly on-field. A limit of detection of 0.2 µg mL(-1) TNT was obtained, which is five times lower than that obtained with a previously described colloidal gold-based LFIA developed employing the same immunoreagents. The dynamic range of the assay extended up to 5 µg mL(-1) TNT and recoveries ranging from 97% to 111% were obtained in the analysis of real samples (post blast residues obtained from controlled explosion).


Assuntos
Imunoensaio , Medições Luminescentes , Trinitrotolueno/análise , Anticorpos/imunologia , Cinética , Trinitrotolueno/imunologia
18.
Biosens Bioelectron ; 32(1): 283-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22188919

RESUMO

A compact portable chemiluminescent biosensor for simple, rapid, and ultrasensitive on-site quantification of fumonisins (fumonisin B1+fumonisin B2) in maize has been developed. The biosensor integrates a competitive lateral flow immunoassay based on enzyme-catalyzed chemiluminescence detection and a highly sensitive portable charge-coupled device (CCD) camera, employed in a contact imaging configuration. The use of chemiluminescence detection allowed accurate and objective analyte quantification, rather than qualitative or semi-quantitative information usually obtained employing conventional lateral flow immunoassays based on colloidal gold labeling. A limit of detection of 2.5 µgL(-1) for fumonisins was achieved, with an analytical working range of 2.5-500 µgL(-1) (corresponding to 25-5000 µgkg(-1) in maize flour samples, according to the extraction procedure). Total assay time was 25 min, including sample preparation. A simple and convenient extraction procedure, performed by suspending the sample in a buffered solution and rapidly heating to eliminate endogenous peroxidase enzyme activity was employed for maize flour samples analysis, obtaining recoveries in the range 90-115%, when compared with LC-MS/MS analysis. The chemiluminescence immunochromatography-based biosensor is a rapid, low cost portable test suitable for point-of-use applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Fumonisinas/análise , Medições Luminescentes/instrumentação , Micotoxinas/análise , Zea mays/química , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Técnicas Imunoenzimáticas/economia , Técnicas Imunoenzimáticas/instrumentação , Técnicas Imunoenzimáticas/métodos , Limite de Detecção , Medições Luminescentes/economia , Medições Luminescentes/métodos
19.
Anal Chem ; 83(8): 3178-85, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21434620

RESUMO

A simple and versatile analytical device designed to perform, even simultaneously, different types of bioassays has been developed and optimized. A transparent microfluidics-based reaction chip, where analytes were quantitatively detected by means of biospecific reactions and chemiluminescence detection, was placed in contact with a thermoelectrically cooled CCD sensor through a fiber optic taper. Such a lensless contact imaging configuration combined adequate spatial resolution and high light collection efficiency within a small size portable device. The miniaturization of the reaction chamber ensured short analysis times (in the minutes range), while the use of chemiluminescence detection provided wide signal dynamic range and high detectability, down to attomole levels of protein and femtomole levels of nucleic acid analytes. A model hybrid panel test was realized by combining an enzyme assay for alkaline phosphatase activity, a nucleic acid hybridization assay for Parvovirus B19 DNA, and an immunoassay for horseradish peroxidase as a model antigen. The successful simultaneous quantification of the three targets demonstrated that a range of analytes, from enzymes to antigens, antibodies, and nucleic acids, can be measured in a single run, thus enabling the realization of a complete, personalized diagnostic panel test for early diagnosis of a given disease and patient follow-up.


Assuntos
Técnicas Biossensoriais/métodos , Medições Luminescentes/métodos , Técnicas Analíticas Microfluídicas/métodos , Medicina de Precisão/instrumentação , Fosfatase Alcalina/análise , Fosfatase Alcalina/metabolismo , Animais , Técnicas Biossensoriais/instrumentação , Bovinos , DNA Viral/análise , Desenho de Equipamento , Peroxidase do Rábano Silvestre/análise , Peroxidase do Rábano Silvestre/metabolismo , Medições Luminescentes/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Ácidos Nucleicos/análise , Medicina de Precisão/métodos , Soroalbumina Bovina/análise
20.
Anal Bioanal Chem ; 399(9): 2889-97, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20936262

RESUMO

The identification and localization of organic components in the complex stratigraphy of paintings play a crucial role in studies of painting techniques and authentication, restoration, and conservation of artworks. Much scientific effort has been expended for the development of analytical approaches suitable for the investigation and characterization of organic substances, allowing high sensitivity, specificity, and spatial resolution. Proteins (e.g., ovalbumin, casein, and collagen from different animal sources) are one of the classes of organic substances most widely used as painting materials. The analytical techniques commonly used for their analysis (micro Fourier transform infrared spectroscopy, chromatographic techniques, and proteomic approaches) have limits related to the lack of specificity or to the absence of information concerning the stratigraphic localization of the detected proteins. Immunological techniques are a promising alternative approach for the characterization of proteins in artworks. Thanks to the high specificity of antigen-antibody reactions, these techniques are widely used for the analysis of proteins in bioanalytical and clinical chemistry and recently they have been successfully applied in the field of science for conservation of cultural heritage. The present research aimed to develop an ultrasensitive chemiluminescent immunochemical procedure for the simultaneous localization of ovalbumin and bovine casein (two common proteins found in binding media or varnishes of artistic and archaeological samples) in resin-embedded painting micro cross-sections. The possibility of performing the simultaneous identification of different proteins in painting cross-sections is of particular relevance in the field of cultural heritage because samples are often small and available in a limited number; therefore, the maximum amount of information must be obtained from each of them.


Assuntos
Caseínas/química , Imunoquímica/métodos , Ovalbumina/química , Pintura/análise , Pinturas , Animais , Bovinos , Imunoquímica/instrumentação , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...